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Structure-Activity Relations: Maximizing
the Usefulness of Mutagenicity and
Carcinogenicity Databases
by G. Klopman* and H. Rosenkranzt

The most important criteria for the development and analysis ofdatabases for elucidating the structural bases of tox-
icological activity include the integrity of the databases with respect to uniformity of the experimental protocol and in-
terpretation ofthe test results and inclusion ofch cls representin different chemical classs and differingmechanisms
of action. Within these criteria, it is de_mostrated that when the chemials are chosen at random, the larer the database,
the better the pedictvity ofchemials not inlud in the learning sL It is shownhower, thatwhenchemicasare selected
on the basis of structural features, that a learning set ofapproxmately 180 chemicals is as informative as a database con-
sisting of 800 chemicals chosen at random.

Introduction
Whereas most current studies, including those reported in this

symposium, deal with the classification of information, our ap-
proach is to rationalize the available data and thus permit ex-

trapolation to molecules that have as yet not been tested. The
eventual outcome ofsuch an approach is to help optimize ongo-
ing studies such that they, in turn, will provide a maximal amount
of information of a mechanistic and predictive nature.
A characteristic ofthe available databases ofdirect concern to

us is that they are composed ofa wide variety ofchemicals with
diverse structures, e.g., polycyclic aromatic hydrocarbons,
nitrosamines, halogenated hydrocarbons, and dyes. They are
thus not amenable to traditional quantitative structure-activity
relationship (QSAR)-type studies, which require congeneric
databases. To overcome this obstacle, we have been investigating
how knowledge-based systems could be useful.

In this survey we discuss our experience with using available
databases ofcarcinogenic, mutagenic, and related biological end
points to establish such a resource undertaken for mechanistic as
well as predictive purposes. We stress that our analysis is, of
course, influenced by the structure-activity relationship (SAR)
methodology we employ, namely, CASE (1,2). Howvver, CASE,
as an artificial intelligence/expert system, is probably one ofthe
most advanced SAR methods available and a harbinger of the
developments that are to come to this methodology in general.
In this connection, it is germane to list some of the unique
features that were incorporated into this program:
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1. In order to make the system truly effective, it had to be in-
dependent of operator-formulated questions. These by
definition, are finite and simplistic and usually based upon
previous knowledge (i.e., they may be biased). Thus, we
required the system to generate all ofthe possible structural
"descriptors" automatically without operator input.

2. Because we felt that the biological activity is dependent on
molecular subunits usually larger and more complex than
those considered by chemists as simple functionalities, we
required that our system be capable ofhandling and iden-
tifying relatively large molecular moieties.

3. We realized that most SAR systems are based on the
analysis of congeneric databases. e.g., nitroarenes, aro-
matic amines, halogenated hydrocarbons, etc. This,
however, involves the arbitrary assignment ofchemicals to
certain classes and, when dealing with databases contain-
ing various chemical classes, might a) intrduce bias in the
selection process and b) make the emerging classes too
small for adequate structural analysis. Moreover, if
biological activity is derived inherently from structural
features, by "artificially" separating chemicals into
restricted classes, we might lose informational content. Ac-
cordingly, we needed a system that was able to handle, in
a single database, molecules of very different chemical
types.

4. We also wanted to include in our system the capability of
updating the "descriptors" as information on new
molecules became available, i.e., the system had to be
self-learning.

5. We required the resulting analyses not only to be predictive
but also to provide clues as to possible mechanisms of
biological activity.

6. Finally, we wanted the system to handle biological end
points that may result from a single mechanism, a com-
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bination ofconcerted or sequential actions, or two or more
independent mechanisms.

The program we constructed to meet these requirements is
called CASE and, in its latest and greatly improved version,
MULTICASE.

Nature of the Database
What are some ofour conclusions relating to the requirements

of the composition of a database to be useful for SAR studies?
Because of the growing sophistication ofcomputer-based SAR
systems and the investment oftime as well as CPU cost, it is im-
portant to begin with carefully evaluated databases. Some ofthe
requirements for such databases are self-evident: The database
must be obtained using standard protocols for which the quali-
ty ofthe data must be monitored. This is borne out by experience
with some ofthe cytogenetic end points that are contained in the
Gene-Tox Program database as compared to those in the National
Toxicology Program (NTP) compilations. Thus, even using the
peer-review process inherent in the Gene-Tox Program, the SAR
methodology could not be applied with great success to some of
the Gene-Tox databases (unpublished results), whereas the NTP
databases allowed thorough analyses ofthe structural features of
the cytogenetic activities (3). Our analysis of the data led us to
conclude that the difference came from the quality control,
which was assured in the NTP protocol but could not be con-
trolled in the Gene-Tox Program. This is due to the fact that the
latter relied on published data, and, moreover, the chemical puri-
ty (or rather impurity) was not generally known. Nevertheless,
CASE can handle some "fuzziness" in the data because it is
based on the statistical evaluation ofthe importance ofsubstruc-
ture rather than on a quantitative relation.
The second, also perhaps self-evident, point relates to the in-

terpretation of the data. Both the biological and statistical stan-
dards used for interpreting the test results must be adhered to
rigidly and must, of course, be spelled out initially. This is
especially important in the manner in which results are expressed
when a continuous activity scale is used, e.g., revertants per
nanomole or milligrams per kilogram per day. Although there
are computer routines to scale and model cutoffs, thisjudgment
should not be delegated to a computer. In fact, we find that the
human expert is essential to determine the boundary between in-
active and marginally active chemicals and between marginal-
ly active and active chemicals. The scaling can then be done by
the computer following these initial boundary settings.

In addition to defining the accepted definitions of the end
points with respect to databases, the purpose ofthe analysis must
also be defined aprioi. Thus, for different mechanistic purposes
we might use different mutagenicity databases or different col-
lections of data derived from these compilations. For example,
a) mutagenicity in a specific Salmonella tester strain in the
absence of S9 might be used. The purpose of such an analysis
would be perhaps to study the structural basis ofthe mutagenicity
of nitrated polycyclic aromatic hydrocarbons, which are max-
imally expressed in strain TA98 in the absence of exogenous
metabolic activation (1,4). b) The activity might be in Salmonella
TAIOO or in TA98 in the presence of S9. Thus, for the aromatic
amines, this would allow the determination of specific combina-
tions that would be informative. In fact, using a database ofonly

TA100 in the presence of S9 as against one of only TA98 in the
presence of S9, the effect of mutagenic specificity by aromatic
amines at a single guanine-cytosine (G-C) base pair (as in
TA100) as opposed to the specificity ata series ofalternating G-C
pairs (as in TA98) was amenable to analysis (5,6). c) On the other
hand, if we wish to study and evaluate how Salmonella muta-
genicity compares in its predictivity to the results of rodent car-
cinogenicity bioassays, then for the Salmonella data we might
define as a positive response a response in any one of the tester
strains obtained either in the presence or absence of S9 (2,7).
Under these conditions, of course, it must be ascertained that
before a chemical is designated as negative that it has indeed been
tested in the complete panel oftester strains both in the presence
and absence of S9. Obviously, this approach, whichhas also been
used to assess the predictivity of the Salmonella assay for car-
cinogenicity in rodents (810), assumes that the structural deter-
minants responsible for activity in different strains are identical
and equally related to carcinogenicity. In fact, we know that these
are oversimplifications.

Nature of the Chemicals in the Database
The natureofthe chemicals represented inthe database is prob-

ably themostdifficult to address. Inviewofthe fact thatCASEcan
handle noncongeneric databases, then some ofthe requirements
are easy to statebutdifficult to implement: A database (i.e., learn-
ing set) shouldcontain representatives ofvarious chemical classes
andchemicals thatcoverthe spectrumofmechanisms that induce
a particular biological end point (11). To satisfy such a require-
ment, it might seem a truism to say that a variety of chemical
classes need to be represented in the data base. However, this is
more easily said than done. Looking at the problem from a
chemical pointofview, using, forexample, the experience ofthe
Gene-Tox Program, initially, in excess of60chemical classes were
defined (12). This resulted in a situation that for SAR studies,
there were very few representatives per chemical class such that
SAR analyses were not feasible. Subsequently, the number of
chemical classes was reduced to 30 (13). Still, this left many
chemical classes underrepresented for the purpose of SAR
analysis. Moreover, such separations imply that we know those
structural features that are necessary for biological activity. This,
ofcourse, involves a selection bias. On the other hand, a system
like CASE selects its own descriptors, and these in turn allow it
to bypass the traditional chemical classes (Table 1).

It is of interest that by and large the CASE program usually
identifies not more than approximately 12 to 15 significant
biophores in a noncongeneric database (Table 2). This means
that there are usually a sufficient number of representative
chemicals in each ofthe biophore classes that are selected. Ad-
ditionally, CASE also identifies biophobes, i.e., functionalities
that contribute to a lack of activity. These might be considered
as "non-alerts" in the scheme of Ashby (14).

In creating databases, if one has unlimited funds, one might
decide to test as many chemicals as possible and enter the results
into the database. Under such conditions, one need not be con-
cerned about redundancy of chemical structures. Thus, one
would not be worried that there might be too many nitrofurans
in a database, as the logic ofthe CASE program sees to it that the
biophore associated with nitrofurans will achieve significance
when a certain preset probability value has been reached (e.g.,
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Table 1. Molecules sharing a common biophore.5

CH =CH

CH

-C.

CH"

o-Phenanthroline
D & C Yellow 11
9-Nitroanthracene
l-Nitro-2-methylnaphthalene
C.I. Pigment Red 3
C.I. Pigment Red 23
D & C Red 9
8-Hydroxyquinoline
C.I. Solvent Yellow 14
N-Phenyl-2-naphthylamine
Benzo(a)pyrene
3-Methylcholanthrene
Benz(a)anthracene
7,12-Dimethylbenz(a)anthracene
Phenanthrene
Benzo(J)quinoline (beta-Na)
l-Nitronaphthalene
Naphthalene
Quinoline
2-Naphthylamine
Coumarin
Anthracene
Pyrene
l-Naphthylamine
Benzo(e)pyrene
1,8,9-Trihydroxyanthracene
1-Naphthylisothiocyanate
2-Anthramine
7,9-Dimethylbenz(c)acridine
N-(l-Naphthyl)ethylenediam
7-Bromomethyl-12-methylbenz(a)anthracene

aNote that polycyclic aromatic hydrocarbons, aromatic amines, nitroarenes,
and others contain this biophore, which has been identified as significant with
respect to mutagenicity in Salmonella (p = 0.0001).

Thble 2. Sme ofthe biophores and biophobes contributingto the probability
of carcinogenicity in rodents.'

Number of Marginally
Fragment fragments Inactive active Active Probability
Activatingb
NH2-C= 53 12 5 36 0.000
Cl-CH2- 19 5 2 12 0.058
C"-O-C= 5 0 0 5 0.031
O-CH2-CH- 6 0 1 5 0.031
C=CH-C=C- 49 11 6 32 0.001
CH=C-C=CH- 54 14 7 33 0.005
CH=C*-CO-C*= 5 0 0 5 0.031
CH2-CH2-CH2-CH- 5 0 0 5 0.031
O-CO-C=CH- 9 0 3 6 0.020

Inactivating
OH-CH- 9 8 1 0 0.004
S-CH- 5 4 1 0 0.063
aThis table lists the distribution of the major fragments among active, inac-

tive, and marginally active molecules. This distribution is used to predict the
likelihood that the presence (or absence) of the fragment contributes to car-
cinogenicity. Also listed are the probability values associated with the fragments.

bC- indicates a carbon atom common to two rings. C " indicates the carbon is
attached by a double bond to an outside substituent.

p < 0.05), at which point that biophore will be flagged and iden-
tified. Having more representative molecules containing that

biophore in the pool will not contribute overwhelmingly to the
predictivity. Similarly, using the same reasoning, ifthe database
contains too great a prevalence ofactive molecules, this will not
affect the identification and performance of the predictive
biophores that are identified provided that there are a sufficient
number of molecules in the database.

Congeneric versus Noncongeneric
Databases

Heretofore the majority ofSAR metfiods were designed for the
study and prediction ofcongeneric databases such as those con-
taining polycyclic aromatic hydrocarbons, nitroarenes, aromatic
amines, etc. One of the breakthroughs provided by CASE is its
ability to analyze none congeneric databases (i.e., mixed
databases). The question then facing us is: Everything else be-
ing equal, how do the two types of databases compare with
respect to predictivity?
Let us take the NTP Carcinogen Database as an example. In

one of our analyses we had approximately 250 chemicals, of
which 53 were aromatic amines (15,16) (Table 3). As an exercise,
we then selected the 53 aromatic amines and used them to con-
struct a congeneric database. We then used the two databases, the
noncongeneric and the congeneric one to study the predictivity
of each of them for aromatic amines. The results indicate that
both databases were highly predictive of the carcinogenicity of
aromatic amines (Table 4). However, further analysis indicated
that the noncongeneric database was significantly more predic-
tive than the congeneric one. This appears to be derived from the
fact that the biophores selected by CASEmay cut across chemical
species and could, for example, have been derived in the case of
the noncongeneric database not only from aromatic amines but
possibly from related nitroarenes. In the case ofthe congeneric
database consisting only of aromatic amines, such biophores
would not necessarily be identified (Table 5). Thus, the non-
congeneric database may indeed be superior even when a suffi-
cient number of congeneric database chemicals are present
therein because CASE can learn from related molecules which,
for example, may yield the same metabolic intermediates (e.g.,
N-arylhydroxylamines), which are derived from both arylamines
and nitroarenes by oxidative and reductive pathways, re-
spectively.

Table 3. Relationship between structure of aromatic amines and
carcinogenicity in rodents.

% Actives
and equi-

Fragment Total Inactive Equivocal Active vocals
All molecules 252 88 29 135 65.1
NH2-C= 53 12 5 36 77.4
NH2-C=CH-CH=' 38 10 5 24 76.3
NH2-C=C-CH=CH-b 19 3 0 16 84.2
NH2-C=CH-CH=
C-C-NH2b 4 0 0 4 100
'This fragment is not associated with an increased probability of carcino-

genicity.
bCASE identified these aromatic amine-derived fragments as associated with

an increased probability of carcinogenicity.
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Table 4. Comparison of congeneric versus noncongeneric database in the
prediction of the carcinogenicity of aromatic amines.

Noncongeneric' Aromatic amines
Number 252 53
Carcinogens 65.1% 77.4%
Correct predictions 96.2% 88.7%
Expected (random) predictions 56.4% 56.4%
X2 44.22 29.04

'Contains the 53 aromatic amines.
R R
I I

TbbIe5. Some nonaromaticamin that share biophoresCH=C-C=CH-
with aromatic amines.'

Mutagenicity
Chemical Carcinogenicityb (Salmonella)
CI. Disperse Yellow 3 A +
HCBlue 1 A +
Nitrofen A +
D&CRed9 B +
3,3 '-Dimethoxybenzidine-4,4'-

diisocyanate B +
2,4-Dinitrotoluene B +
3-Nitro-p-acetophenetide D +
HC Blue 2 NC +
Tetrachlorvinphos A
'R is not a hydrogen. This biophore was identified in the total database con-

sisting of253 chemicals. It was not found to have significance in the database con-
sisting only of aromatic amines.

bClassifications of Ashby and Tennant (9). A, induces tumors in rats and
mice; B, carcinogenic toonly one species but induces cancers at tw or more sites;
D, carcinogenic at a single site in a single species; NC, noncarcinogenic.

How Many Chemicals Are Needed
in a Database?

Obviously, we do not possess unlimited resources, and the
number of chemicals that can be tested is by necessity limited.
Therefore, we might ask the question, how many chemicals are
needed in the learning set when it consists of noncongeneric
molecules? This is a question that needs to be decided when
testing programs are set up and the data used for SAR analyses.

In Table 6 we show the predictivity ofusing different numbers
of chemicals in the learning set. The chemicals in the learning
set were selected at random from the NTP Salmonella Mu-
tagenicity Database. The biophores identified using the different
databases were then used to predict the mutagenicity ofa panel
of 100 chemicals, not in the learning set, but for which the test
results were available ("diagnostic tester set").
The results ofthe analysis clearly show that the predictive per-

formance ofCASE improves with an increase in the number of
chemicals in the learning set (Table 6). However, generating
databases consisting ofsuch large numbers ofchemicals is costly,
even if we restrict the testing to the Salmonella mutagenicity
assay only. Obviously, ifwe use experimental systems that are
more labor intensive or which involve large numbers ofanimals,
the cost will rapidly become prohibitive. Thus, it is not surprising
that very few rodent cancer bioassays have been repeated given
a cost which may exceed $1 million per assay.

In search for a method to decrease the number of chemicals
that require testing (i.e., to limit the size ofthe database), we ex-
plored a number of possibilities. We devised an efficient pro-
cedure, which is dependent on another feature ofCASE. Indeed,
CASE predictions can take a number offorms: a) a chemical can

Tbhle 6. Predictive oda ases co incrasing numbers
of randomly selected chemicals.'

n Concordance, % X2
25 60.2 5.89
50 58.9 3.78
100 68.2 14.67
243 75.3 27.4
820 81.0 31.3

'All of the subsets of chemicals are contained within the set of 820. The
chemicals were chosen at random from among the 820 molecules in the database
except for the 243 chemicals, also a subset ofthe 820 that represents chemicals
on which rodent cancer bioassays were performed (9,10).

FIGURE 1. CASE prediction of the mutagenicity in Salmonella of 1,3-di-
methyl-4-nitrobenzene.

be predicted to be active because it contains a biophore (Fig. 1);
b) a chemical can be predicted to be inactive because it contains
a biophobe (Fig. 2); c) a molecule can be predicted to be inac-
tive because it lacks a recognizable biophore and/or biophobe.
That later prediction is due to the fact that fragmentation of the
molecule yields fragments that had been seen before but had
beenjudged to be trivial with respect to biological activity (Fig.
3); d) an additional possibility is that the CASE program has
identified an unrecognized functionality (i.e., unknown). This
refers to the presenceofafragment that has notbeendocumented
among the collection offragments generated (Figs. 4-6). The
presence ofsuch a fragment introduces a note ofinconclusive-
ness into the prediction, which appears to be the major reason
for decreased predictive performance (17). This uncertainty
might, in fact, be a direct function of the number ofchemicals
in the learning set. That is, the more chemicals there are in the
learning set, the less the chance that this message will appear
(Table 7).

Can SAR Concepts Reduce the
Number of Chemicals That Need to
Be Tested to Generate a Useful
Database?
As shown above, the larger the database, the better the predic-

tive performance. However, the question then still is are we real-
ly interested in generating, at a great cost, databases that allow
85, 90, 99, or even 99.9% concordances between experimen-
tal results and predictions, especially ifthe actual experimental
data are only 85% reproducible, as appears to be the situation
with the NTP Salmonella Mutagenicity Database? In fact, a
number of analyses have indicated that the limit of the predic-
tivity of the CASE program for mutagenicity in Salmonella is

1 ,3-Dimethyl-4-nitrobenzene

93% chanceof being ACTIVE due to substructure (Conf. level = 100%):
N02-C=CH-CH=

80% chance of being ACTIVE due to substructure (Conf. level = 87%):
N02-C=C-CH=

* * *OVERALL,theprobabilityof being aSalmonellamutagen is98.2%* * *
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approximately 80% (17). Moreover, the reproducibility ofthe ro-
dent carcinogenicity bioassay is largely unknown since so few of
the chemicals have been tested more than once. We ought to aim
for economy and reliability.

FIGURE 2. CASE prediction ofthe lack of mutagenicity of benzyl violet 4B.

FIGURE 3. CASE prediction of the lack of mutagenicity of tert-butylhy-
droquinone. Fragmentation ofthis molecule does not yield fragments that have
been identified as biophores of biophobes.

FIGURE 4. CASE prediction of the mutagenicity of 2-aminobenzimidazole.
CASE recognized a biophore that leads to an 87% probability ofmutagenicity.
However, this conclusion must be moderated by the fact that this molecule
contains a fragment that has not been seen before and that could be a biophobe.

FIGURE 5. CASE prediction of the lack of mutagenicity of cysteine due to the
presence of a biophobe. However, this conclusion is moderated by the fact
that cysteine cortains a fragment not seen before, which might be a biophore.

FIGURE 6. A CASE prediction of lack of mutagenicity due to the fact that
fragmentation of the molecule does not lead to the generation of either a
biophore or a biophobe. However, this prediction must be moderated by the
fact that a fragment, heretofore not seen, has been recognized, and it could
be a biophore.

Table 7. Effect of size of the learning set on the number of inconclusive
predictions.'

Number of chemicals Inconclusive
in learning set predictions, %b

25 61
50 54
100 47
250 33
820 22

aThe diagnostic tester set consisted of 100 molecules that were not present in
the learning sets.
bNumber ofpredictions in the diagnostic tester that contain fragments that had

not been seen before (see Figs. 4-6) and which therefore may be inconclusive.

Our analysis of the performance of CASE suggests that
perhaps we could use the uncertainty factor (see above) in the
design of a database that will contain the fewest chemicals that
need to be tested. To test this hypothesis, the following protocol
was devised and tested: a) a list ofchemicals including different
chemical classes, different uses, and different levels ofproduc-
tion (18) is selected; b) from among this list, we might select, at
random, say 100 chemicals that will be tested (or which already
may have been tested). This forms the original learning set (set
1); c) this original learning set is analyzed by CASE and the
biophores and biophobes are identified; d) another set of50 ran-
domly selected chemicals (excluding those chemicals in set 1),
as yet untested, are run against this original learning set; e) those
chemicals which, in step d, yield a prediction that includes the
uncertainy message are then selected for testing as mutagens in
Salmonella. The results of the tests are then included in a new
learning set (set 2, which includes the chemicals in set I);J) this
procedure is performed iteratively.
To evaluate the effectiveness ofthe selection procedure at each

step, the predictivity ofthe database is evaluated by challenging
it with the hundred chemicals not included in the learning sets but
for which test results are available ("diagnostic tester set"). The
results ofthese analyses clearly indicate (Table 8) that by careful
selection ofchemicals for testing, the number ofchemicals that
need to be tested to generate a learning set adequate for SAR
predictions can be greatly reduced. This is accompanied by a
corresponding decrease in cost. In fact, a comparison ofTables
6 and 8 clearly indicates that a database of approximately 180
carefully selected chemicals is as predictive as a database con-
sisting of in excess of800 chemicals that have not been selected
by the criteria. Similar results were obtained (19) using the Gene-

Benzyl Violet 4B

2-Ammino-4-(methylsulfonyl)phenol

***WARNING*** The following functionalities are UNKNOWN to me:
***SO2-C=CH-
** The results may be INCONCLUSIVE due to the presence of

UNKNOWN functionalities **
**No basis found to support activity; The molecule is presumed
INACTIVE**66% chance of being INACTIVE due to substructure (Conf. level=97%):

CH=C-C=C-
***downgraded from 86% because of incorrect Conformation
75% chance of being INACTIVE due to substructure (Conf. level=75%):

CH2-N-C= <2-CH2>

83% chance of being INACrIVE due to substructure (Conf. level=94%):
CH=C-CH= <S-SO2>

***OVERALL, the probability of being a Salmonella mutagen is 3.4%***

tert-Butylhydroquinone
**No basis found to support activity; The molecule is presumed
INACTIVE**

2-Aminobenzimidazole

***WARNING*** The following functionalities are UNKNOWN to me:
*** NH2-C"'-NH-

** The results may be INCONCLUSIVE due to the presence of
UNKNOWN functionalities **

87% chance of being ACrIVE due to substructure (Conf. level=100%)
CH=CH-CH=CH-C-=

***OVERALL, the probability of being a Salmonella mutagen is 87.0%***

CYSTEINE

***WARNING*** The following functionalities are UNKNOWN to me:
*** SH-CH2-CH-

** The results may be INCONCLUSIVE due to the presence of
unknown functionalities **

83% chance of being INACTIVE due to substructure (Conf. level=94%):
CO-CH-NH2

***OVERALL, the probability of being a Salmonella mutagen is 17.0%***
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lible 8 Predictive performance ofdatabasecontaining increasing numbers
of selected chemicals.

Set n Concordance, % X2
1 lOOa 69.3 6.36
2 119 77.0 19.75
3 142 77.6 21.89
4 160 74.0 16.59
5 179 80.8 28.11
6 198 78.0 22.76
7 210 80.6 26.77
8 219 78.1 22.59

'The first 100 chemicals are presumed to represent a random assortment of
molecules. They were not selected by the procedure described here. Each subse-
quent set contains an increment ofmolecules selected from sets of50. Thus, set
2 contains the previous 100 molecules (set 1) plus 19 selected from among a set
of 50. Similarly, set 3 contains the previous 119 moleclues (set 2) plus 23
molecules selected from among another set of 50. This procedure is used
iteratively. The selection of molecules is described in the text.

Tox Salmonella database, which not only contains a different col-
lection of chemicals but also a higher prevalence of mutagens
(78.5% versus 36.5 %).

Quantitative versus Binary Databases
There are two major ways of expressing the results of SAR

analyses: a) as active, marginally active, and inactive. This, a
priori, involves a prejudgment involving the human expert who
then sets the boundaries as to what is considered a positive,
marginal, and negative result. Summarizing the results in this
manner and applying the CASE program leads to the generation
of fragments that are involved in the probability of a certain
biological activity (e.g., mutagenicity, carcinogenicity) and
therefore provides a possible procedure for risk identification for
testing prioritization. Indeed, such probabilities appear to be
related to the biological properties. Thus, the degree ofthe car-
cinogenicity ofa chemical as defined by Ashby and Tennant (9)
appears to be related to the probability of carcinogenicity: an
overall high probability is associated with chemicals that cause
cancer in both rats and mice at multiple sites ofboth sexes (Table
9). b) When, however, results are expressed in a continuous scale
(e.g., TD50 in milligrams per kilogram per day or mutagenicity
in revertants per nanomole), this permits two independent
analyses to be carried out: a probability ofcarcinogenicity, iden-
tical to the procedure described above and a QSAR analysis,
which leads to the identification of biophores and biophobes
associated with potency (Table 10). The latter analysis leads to
a second prediction, that of potency (Fig. 7).

Thus, from the fragments associated with the mutagenic poten-
cy of nitroarenes (Table 10), we can calculate the projected ac-
tivity of a chemical where

CASE activity = 9.208 + nF + 1.22 log P

where n is the number of times a fragment occurs in the
molecule, Fis the CASE activity associated with that fragment
(Table 10), and P is the n-octanol/water partition coefficient. Ac-
cordingly, for 1,6-dinitropyrene (Fig. 7), biophore B (which is
present twice) is the same as biophore 7 (Table 10), which is
associated with a mutagenic potency of 21.576 units, and,
moreover, 1,6 dinitropyrene also contains two copies ofbiophore
3 (17,093 units) (Table 10).

Table 9. Relationship between the probability of carcinogenicity
and carcinogenic classification.

Rodents Rats Mice
Group' n Probability n Probability n Probability
A 64 75.0 ± 14.0
B 19 73.9 ± 14.2 50 66.3 ± 11.0 46 67.2 ± 17.3
C 27 67.9 ± 16.9 21 59.6 ± 15.3 34 65.3 ± 10.9
D 25 70.8 ± 12.9 29 63.2 ± 17.7 19 62.3 ± 16.7
E 29 45.0 ± 30.9 18 7.4 ± 18.8 17 18.7 ± 27.1
NC 88 74.8 ± 13.1 134 9.0 ± 17.6 136 8.1 ± 14.8
A + B 83 74.8 ± 14.1 50 66.3 ± 11.0 46 67.2 ± 17.3
C + D 52 69.1 ± 11.6 50 61.7 16.8 53 64.3 13.3
All 252 51.2 ± 30.2 252 30.7 ± 31.7 252 34.1 ± 32.6
aThe classification of Ashby and Tennant (9) was adopted. In that scheme,

chemicals in groupA induce tumors in rats and mice. GroupB includes chemicals
that are carcinogenic to only one species but which include cancers at two or more
sites. Group C consists ofchemicals that are carcinogenic at only a single site
in both sexes of a single species. Group D contains chemicals carcinogenic at
a single site ina single species. GroupE is adequately studied chemicals forwhich
only equivocal evidence ofcarcinogenicity was observed. NC, noncarcinogens.

Table 10. Some biophobes associated with the mutagenic
potency of nitroarenes.'

Number of
QSAR fragments chemicals QSAR
N02-C=CH-C-= 45 11.382+++ 1
CH=C--C=CH- <3-NO> 3 17.093+ 2
CH=C--C=CH- <3-NO2> 49 17.093+++ 3
OH-N-C=CH- <3-CH=> 1 5.390 4
NO-C=CH-CH=C-- 3 21.576+ 5
NO2-C=CH-CH=C- 15 8.754+++ 6
NO2-C=CH-CH=C-- 57 21.576+++ 7
CH=C-C=CH-C= <3-NO2> 10 3.982+++ 8
NO2-C=C-CH=CH-C= 10 3.982+++ 9
CH=CH-C=CH-C=C- <5-NO2> 10 3.982+++ 10
N02-C=CH-C=CH-CH=C- 10 3.982+++

'Constant = 9.208.

[1,Dinitropyrene

FIGURE 7. Prediction of the mutagenicity and mutagenic potency of 1,6-
dinitropyrene.

Another feature ofCASE is the estimation ofthe log P, which
for 1,6-dinitropyrene is 4.7968. Accordingly, the CASE activi-
ty of 1,6-dinitropyrene is

9.208 + [2(17.093)] + [2(21.576)] + 4.7968 = 92

CASE activity is expressed in a log scale; an activity of 92 is
equivalent to 200,000 revertants/nmole. This, in fact, goes

beyond mere risk identification, which is based on the probabili-
ty of activity, because the prediction also involves a measure of
potency that can be used in a quantitative risk assessment. Ob-

(A) 97% chance of being ACTIVE due to substructure (Conf.
level = 100%): CH=CH-C =C-CH=CH-C=

(B) 95% chance of being ACTIVE due to substructure (Conf.
level = 100%): NO2-C=CH-CH=C-

(C) 92% chance of being ACTIVE due to substructure (Conf.
level = 100%): CH=C C:-CH-

***OVERALL, the probability of being a Salmonella mutagen is 100%' * *

**The compound is predicted to be EXTREMELY active (92) * *
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FIGURE 8. Relationship between experimental and predicted mutagenic ac-
tivity for a series of nitroarenes. The activities are expressed in CASE activ-
ity units, which is a logarithmic scale; r2 = 0.8371.

viously, before using such potency values, they must be com-
pared against the experimentally obtained values (Fig. 8).

In addition to allowing an estimation of the potency of an
unknown chemical, the identification ofthe biophores associated
with potency permits an assessment of the relative role of dif-
ferent biophores in activity. Thus, as a result ofthe logarithmic
nature of the activity scale, it can be calculated that biophore 7
(Table 10) contributes 88% ofthe mutagenicity of 1 ,6-dinitro-
pyrene; i.e, it is the major contributor to potency. Such analyses
have obvious mechanistic implications (20). Thus, studies seek-
ing to investigate the basis of the potent mutagenicity of this
chemical should concentrate on that portion of the molecule.

Comparison of Some Carcinogenicity
Databases
We have performed analyses ofa number ofdifferent rodent

carcinogenicity databases including the NTP rodent bioassay
(9,10) and the compilation of Gold and associates (21-23)
which includes TD50 values. Analyzing these databases allow-
ed us to identify the structural features responsible for the pro-
bability of carcinogenicity (i.e., the qualitative aspect of the

analysis). Moreover, by analyzing carcinogenicity for only the
mouse or only the rat, we were able to identify biophores
characteristic for each of these activities as well as biophores
common to both the rat and the mouse. These have mechanistic
implications that will not be described here (see below).
Applying theQSAR CASE analysis to the database assembled

by Gold et al. (21-23), which includes TD50 values, indicated
that the data could be used to generate QSAR relationships for
individual databases (i.e., mouse and rat separately) which, in
turn, can be used to project carcinogenic potencies based upon
the QSAR contribution of individual biophores (Table 11). [The
TD50 value is defined as the lifetime dose (milligrams per

kilogram per day) that reduces by one-half the lifetime chance
of remaining tumor-free (24). Thus, carcinogenic potency can

be projected in a manner similar to that described for the
mutagenicity of 1,6-dinitropyrene (see above).

Validation
Before using the biophores and biophobes for predictive and

mechanistic studies, a number ofcontrols need to be performed.
Routinely, from the available database, a setofrandomly selected
chemicals isremovedbefore theCASEanalysis. Thesechemicals
are then used as a tester set to test the predictivity ofthe data set.
Subsequently, ofcourse, these chemicals canbe added back to the
learning set and the CASE analysis performed again.

Additionally, when analyzing biological activities such as

mutagenicity, cytogenotoxicity, and carcinogenicity, we also
assembled a database of naturally occurring physiological
chemicals (amino acids, sugars, lipids, purines, pyrimidines,
vitamins, etc.). These chemicals are expected to be negative.
However, on occasion, we have found that some databases led
to predictions that a significant fraction of physiological
chemicals induced some end points, e.g., sister chromatid ex-

change. Such findings cast doubt on the relevance of such assays
as predictors of carcinogenicity (25).

Data Management
Finally, a data management system must be in place to keep

track of the various predictions that are made in the course of
these analyses. Additionally, this will enable testing correlations
ofpredictions. Thus, such a data management system permitted

Table 11. Some biophores and biophobes contributing to the carcinogenic potency.a

QSAR fragmentsb Number of fragments Inactive Marginally active Active QSAR
NH-CH- 5 4 1 0 -11.445--
OH-CH 9 8 1 0 -11.445---
S-CH- 5 4 1 0 -11.445--
Cl-CH= 4 0 0 4 19.531++
CI-CH2- 19 5 2 12 10.057++
C"-O-C= 5 0 0 5 30.867+++
C=CH-C=C- 49 11 6 32 6.387+++
CH=C--CO-C-= 5 0 0 5 8.502+++
NH2-C=C-CH=CH- 19 3 0 16 22.936+ ++
Cl-C=C-CH=CH- 6 5 0 1 -13.869--
CH=CH-C=CH-CH= <3-N> 8 2 0 6 9.863+ +
CH=CH-CH=CH-C-=C-CH= 4 4 0 0 -19.938- -

aConstant = 23.818. The QSAR activity is used to calculate potency using the equations: QSAR activity = 23.818 + nfFf nb Fb where n denotes the number
biophore Ff or biophobe Ff that is present in the molecule.

bC. indicates a carbon atom common to two rings. C " indicates the carbon is attached by a double bond to an outside substituent.
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Table 12. Expected distributions of test results among a population of
random molecules.'

Assay system Positive responses, %
Rodent carcinogens 56
Mutagenicity in Salmonella 39
Chromosomal aberrations (CHO cells) 50
Sister chromatid exchanges (CHO cells) 71
Rodent carcinogen and mutagenicity 39
Rodent carcinogenicity and sister chromatid 44
exchanges

Rodent carcinogenicity and chromosomal 33
aberrations

Sister chromatid exchanges and chromosomal 44
aberrations
'These distributions are based upon the analyses of approximately 1150

chemicals representing many sources and uses.

Table 13. Effect of the prevalence of carcinogens among molecules on the
results of short-term tests: predited positive responses of short-term tests.

Proportion of carcinogens among population of molecules
Assay 0% 10% 20% 45% 65% 100%
Salmonella 13.9% 17.3% 20.9% 27.5% 34.0% 44.2%
Sister chromatid 47.0% 49.4% 50.8% 56.6% 62.8% 68.5%
exchanges

Chromosomal 23.3% 25.7% 27.9% 35.3% 41.6% 50.5%
aberrations

us to determine how often carcinogens are predicted to be muta-
gens or how often Salmonella mutagens are predicted also to in-
duce chromosomal aberrations (Table 12).
Such a database can also be useful for other purposes. For ex-

ample, it could be used to determine the effect on the results of
short-term tests ofdifferent prevalences ofcarcinogens. This, in
turn, will influence the testing strategy used to detect car-
cinogens. Such an analysis shows (Table 13) that there is a con-
siderable proportion of false positive results to be expected, as
evidenced by the fact that when the prevalence ofcarcinogens is
0%, we can expect 14 and 47% of the chemicals to respond
positively in the Salmonella mutagenicity and sister chromatid
assays, respectively (Table 13). Moreover, an unacceptably high
rate of false negatives is to be expected as well, for a population
ofonly carcinogens (100% prevalence) is expected to yield on-
ly a44% rate ofpositive responses in the Salmonella mutagenici-
ty assay.

Conclusion
Pbwerful computer-based expert systems to study SAR are

now available. However, as illustrated here, these methodologies
are greatly dependent on the nature and organization ofdatabases.
Moreover, it has been demonstrated that databases need not be
extensive for SAR analysis. Thus the present studies indicate that
predictive toxicology is possible.

This investigation was supported by the National Institute of Environmental
Health Sciences (ES04659) and the U.S. Environmental Protection Agency
(R815488).
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